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Chapter 0

The Simplex Method for a Two-variable Problem

0.1 Interpretation of the Graphical Method

To introduce the basic ideas of the simplex method, we will use an example with only

two decision variables z and y. We can then see how both the graphical method and
the simplex method works. Consider

Max f(z,y) =30z +20y =

r+ y< 50
subject to ¢ 40z + 60y < 2400

x; Yy > 0
The graph of the feasible region is given in Figure 0.1.

(0.1)
3 W Lw> <

O\('R'X")\B « U =cC

SNERS S I
\ \\\ 3 »
\

\ ‘ (?0) (2, ’lo)(x):%
2 \\, s 2 7 W
\ i a 39 o N
x=0 X, : IF (T r X
N S& 4 d%r“ il;}ﬂa‘
\
tzo N
= {
10 AT2E " i
AL
Szotzs 14
10 \ 5 E - ;
y=0
X X
Figure 0.1. Feasible region for (0.1) K\) )3 ?; ) 11
|10

We note that the constraints are inequalities. Since inequalities are difficult to be
handled by matrices, we first change them into equalities by adding two more variables

TS 2






1.7. Convex Sets 7

CL ey
Definition 1.6. A point x is an eztreme point of a convex set C if there exist no two distinct points
x; and X3 € C such that x = Ax; + (1 — A\)x for some X € (0;1).

Geometrically, extreme points are just the corner points of C.

Ezxample 1.2. MX_ Let W be a subspace of R” and x3,%x2 € W. Thus any linear combination
of x; and x3 is also in W, in particular the linear combination /\xl + (1 - /\)xz € W for 2e [0 1].
This shows that W is convex.

Ezample 1.3. The n dimensional open ball centered at xo with radius r is defined as
Br(x0) = {x| |x —xo| <7}

The n dimensional closed ball centered at xg with radius 7 is defined as

In

By (x0) = {x | |[x — xo| £ r}.

Both the open ball and the closed ball are convex. We prove it for the open ball. Let x;,x2 € B (xo)’
and A € [0,1]. Then

|01 + (L= A)x2) = 0] = A1 = %0) + (1 = X) (32 = x0)] P
" < Axx = xo| + (1~ Nlxz — ol <
Conhasf e.§<F§_./\'r+(1—,\)r=1~_ \

Let S be a subset of R™®. A point x is a boundary point of S if gv_efy_ogg_"\nballcentﬂgd__aj\x
conwm,m# and a point in R™ — . Note that a boundary point can either be in .S or
not in S. The set of all boundary points of S, denoted by 95, is the boundary of S. A set S is closed
if 0S C S." A set S is open if its complement Rﬁmed Note that a set that is not closed
is not necessarlly open; and a set that is not open is not necessarily closed. There are sets that are
neither open nor closed. The closure of a set S is the set S =S5UdS. The interior of a set S is the
set §° =5 —9S5. Aset Sis closed if and only if S = A_SE@MMM
Ezample 1.4. R™ is both open and closed. The empty set () is both open and closed.

Ezample 1.5. The hyperplane P = {x | ¢Tx = z} is closed in R™. In fact we will show that P C OP.
Without loss of generality we may assume |c| = 1. Let x € P and B.(x) is an open ball centered at
x with radius r. Since x € B,.(x) it remains to show that B,(x) contains a point not in P. Let

y=x+gc n,(_ﬁ_,(t h) l\/\’\l*
oo D c P
then . . awe AV E
Ty, _ Ty Tt r "
c'y=c x+2cc z+2>z. | (L) \}KQ\P
Hence y ¢ P. But |y — x| = § therefore y € B,(x) x& af

Ezample 1.6. The half spaces
={x|cT x<z} and X = {x|cTx >z}

are closed in R™. In fact we have 6X; = X, = the hyperplane P = {x | cTx = z}. We will show
that 0X; = P, the proof for 80X, = P is similar.
(P CO0X;:) Let x € P. For any r > 0, let

=x+ 4 c —-x—Lc
yl_ 2|C| ) y2_ 2|C| %

We see that |x —yi1| = T = |x — y2| so both y;,y2 € B.(x). Moreover
2

cTyl—c x+chc—r+2>r



8 Chapter 1. MATHEMATICAL BACKGROUND

and therefore y; ¢ X;. On the other hand

T oy L o r
c =c¢c'x——cc=r—=<r
2 2lc| 2

80 y2 € X;. This shows x € 8X;.
(8X;1 C P ) Suppose x ¢ P. If cTx = 2z < z then let r = 252 > 0. The open ball B,(x) lies
entirely in X;. So B,(x) contains no point outside of X1, hence x ¢ 9X;. If cTx = z; > z then let

r = #=%2 > 0. The open ball B.(x) lies entirely outside of X;. So B,(x) contains no point of X,
hence x ¢ 8X;. In either case ¢ ¢ 0X;.

Lemma 1.1. (a) All hyperplanes are convez.
(b) The closed half-space {x | ¢Tx < z} and {x | ¢Tx > 2} are convez.
(c) The open half-space {x | ¢Tx < z} and {x | ¢Tx > 2} are convez.
(d) Any intersection of convez sets is still convez.

(e) The set of all feasible solutions to a linear programming problem is a convez set.

Proof. (a) Let X = {x | ¢T'x = z} be our hyperplane. For all x;,xs € X and A € [0, 1], we have
cTAx1 4+ (1= ANxa] = AcTxy + (1= Nefxo = Az + (1 - Nz = 2.

Thus Ax; + (1 — A)x2 € X. Hence X is convex.

(b) and (c) can be proved similarly by replacing the equality signs in (a) by the corresponding
inequality signs.

(d) Let C =N, Ca, where C, are convex for all & in the index set I. Then for all x1,x; € C,
we have x;,x3 € C, for all @ € I. Hence for all A € [0,1],

Axy + (1 — )\)Xg € Cy

for all @ € I. Thus Ax; + (1 — A\)xg € C, and C is convex.

(e) For any LP problem, the constraints can be written as a;x < b; or a;x = b; etc. The set
of points that satisfy any one of these constraints is thus a half space or a hyperplane. By (a), (b)
and (c), they are convex. By (d), the intersection of all these sets, which is defined to be the set of
feasible solutions, is a convex set. O

Definition 1.7. Let {z1,---zx} be a set of given points. Let

k
X = Z Mixi
=1

where M; > 0 for all 7 and Zf=1 M; = 1. Then x is called a convexr combination of the points
X1,X2, ", Xk

Example 1.7. Consider the triangle on the plane with vertices x;, x2, x3. Then any point x in the
triangle is a convex combinations of {x1,x2,x3}. In fact, let y be the extension of the line segment
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In R2, a hyperplane is given by the equation ¢;z; + cox2 = 2z, which is a straight line. In R3,
hyperplanes are just planes.

L
el
x?
f'\\J

T

cC" X=2z

Given a hyperplane cTx = z, it is clear that it passes through the origin if and only if z = 0. In
that case, ¢ is orthogonal to every vector x of the hyperplane, and the hyperplane forms a vector
subspace of R™® with dimension n — 1.

If 2z # 0, then for any two vectors x; # x2 in the hyperplane, we have

cT(x1 —Xg) = cTx1—cTxg=2—2=0.
Thus c is orthogonal to x; —x5 which is a vector lying on the hyperplane, i.e. c is also perpendicular
to the hyperplane. We note that in this case, the hyperplane is an affine space.

Definition 1.4. Given the hyperplane ¢Tx = z, the vector c is called the normal of the hyperplane.

Two hyperplanes are said to be parallel if their normals are parallel vectors.

Ezample 1.1. Let xq be arbitrarily chosen from a hyperplane Xp = {x | ¢Tx = z}. Let A > 0 be
fixed. Then the point x; = x¢ + Ac satisfies

cTxy = cTxp + Nc|? = 20 + Ac|? > 2.

Here | - | denotes the Euclidean norm in R™. Let 213 = 2o + A|c|? and define the hyperplane X; =
{x | ¢Tx = 21}. We see that the hyperplanes X, and X are parallel and X; is lying in the direction
of ¢ from Xg. The distance between the hyperplanes is A.

3 .
. 4,}\ c & \X|

E rfd+ )Y C ¢
2o & MBI
= Du\ > ‘?.0

\l
)

1.7 Convex Sets

Definition 1.5. A set C is said to be\convem ﬁf for all x; and x5 in C and X € [0,1], we have
Mx1+(1-MNxe eC.

Geometrically, that means that given any two points in C, then all points on the line segment joining
the given two points should also be in C.

C \V/ X X\ € C ’& ConvBxe CGanbnshs
‘

O(Y({“("y)XLCC

Ve o7
o o C ’t\k - C\ WAL
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Let us suppose that ¢, # 0. Then

m

m

= TB
E Zp;a;; = Z(:vBJ. - —Zcjla;; =b.
i=1 i

j=1

Since Zp, = 0, we have found a degenerate solution to Ax = b, a contradiction. Thus {a;, };nzl is
linearly independent. Using the fact that xp, # 0 for all j, we can, by replacement method, show
that any m — 1 vectors of {aij }Jm=1 together with the vector b are also linearly independent. In fact,

for all zp, # 0, we have
m
_ LB, .@Lb — &,

J#T

Using similar argument as above, we conclude that the set
{aiu mE2 ai,-._l ] a’i«,—+17 e aim7b}

is also linearly independent.

(<) Let {ay;,a,, -+ ,a;,} be an arbitrary set of m columns of A. By assumption, it is linearly
independent. Since a;; are m-vectors, we see that the set {a;,,a;,, - ,a;,,, b} is linearly dependent.
Hence there exist zp,, j = 1,--- ,m such that

m
b= Zijaij.
Jj=1

Thus basic solution exists for such choice of m columns of A. Next we claim that zp,; # 0 for all
j=1,2,--- ,m. Suppose that 5. = 0. Then

m
b - Za:Bjaij =0.
j=1
J#T
That means that the set
{aily MR - VAN a’i,—+1: e aim)b}
is linearly dependent, hence a contradiction to our assumption. Thus zp, # 0 for all j =1,--- ,m.

O

By the same arguments used in the proof of the above theorem, we have the following corollary.

Corollary 1.1. Given a basic solution to Ax = b with basic variables z;,,--- ,T;,,, a necessary and
sufficient condition for the solution to be non-degenerate is the linearly independence of b with every
m — 1 columns of {a;,, - ,a;, }.

1.6 Hyperplanes

Definition 1.3. A hyperplane in R™ is defined to be the set of all points in {x | ¢Ix = 2} where ¢
is a fixed nonzero vector in R™ and z € R. -

GR*(¥ © G2
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Thus Ax; + (1 — A)x2 is also a solution. Hence we have proved that if Ax = b has more than one
solution, then it has infinite many solutions.

To characterize these solutions, let us first suppose that A is an m-by-n matrix with rank(A) =
m < n. Then Ax = b can be written as

-—
23
Bxg+Rxg=b, ‘AX:\D
h . oy
whnere -~
a1 G2 ccr Qim m\ & l R) Xg = L
21 G2 - Q2m n-m |~
m
B= : . . =[al,32)"'!am]a x[‘}
Gm1 Gm2 *°* Omm N. (
L wea«b)
@im+1  Gim+2 °°° Qin e pe oo ‘Y
a2m+1  G2m+42 - Q2n s
R= . . . = [am+lyam+27"' ’an]a
Amn+1 OGmnt+2 *°°  Qmn =
- -3 )
z1 Tm41 &X( = b= g\ Xq
' T3 T2 el v
XB = . and Xg = . . K_/'\,,\_,
Tm Tn

Since the ordering of the variables z; are irrelevant, we can assume that the variables have been
reordered so that B is nonsingular. Or equivalently, we can consider the nonsingular B as being
formed by suitably picking m columns of A. Then we have

—

L %5 =Bl = Boeg) . ] (1.2)

Hence given any x5 we can solve uniquely for xp in terms of xg. Thus to find the solution to (1.1),
we can assign arbitrary values to the (n —m) variables in xg and determine from (1.2) the values

iy . . xB| . .

for the remaining m variables in xz. Then x = | 2| is a solution to Ax = b.
— -
Lj < @ g

1.4 Homogeneous Systems of Linear Equations

A homogeneous system of linear equations is one that is of the form Ax = 0. Its solutions form
an (n — m) dimensional subspace of R™. In fact, the solution space is just the kernel of the linear
mapping represented by the matrix A. Since A is a mapping from R™ to R™, we see that

-~

- 'y~

X@ c¥ N dimension of(kernel of A= dimension of R™ — dimension of range of A A o Lj,
\

Bui\:z ~?\>~<‘9~@7 [—\tﬂl = O =n —rank(4) =n—m. [ R l R} [;R }: ;

Note that if x; is a solution of Ax = b and xg # 0 is a solution of Ax = 0, then x; + X is a solution R

of Ax =b. In fact, : =2 = -
A(X1+Xo)=AX1+AX0=b+0=b. XQ: @ﬁ("’RX{3>
Clearly x; # x; + Xo. Hence we have found two distinct solutions to Ax = b and by the results
in §3, we see that Ax = b has infinite many solutions. Thus we have proved that if n > m, and if _, h -~
Ax = b is not inconsistent, then Ax = b has infinite many solutions. /)(ﬂ <
‘We remark that if b # 0, the solutions of Ax = b do not form a subspace of R", but is a space =
translated away from the origin. Such a space is called an affine space. —

ot g 8 = X[ AR=EY ALt v
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= Ry
1.5 Basic Solutions = Cevien P A=l & TR\M\

]T

Definition 1.1. Consider Ax = b with rank(4) = m < n. Let B be a matrix formed by choosmg \

m columns out of the n columns of A. If B is a non-singular matrix and if all the (n —m) variables
not associated with these columns are set equal to zero, then the solution to the resulting system of

equations is called a|basic_solution\ We call the m variables x; assoc1ated w1th these m columns the
\basic variables, the other variables are called the|non-basic variablds. ps ®

Using (1.2), we see that xp are the basic variables and xg are the non-basic variables. To get

-1

a basic solution, we set xg = 0. Then xg = B~'b and x = [ b] is a basic solution.

0

Definition 1.2. A basic solution to Ax = b is degenerate if one or more of the m basic variables
vanish.

Ezample 1.1. Consider the system Ax = b where

G () Akl (D=0

If we take B = [al ay] = [(1) ﬂ In this case xg = [-1,1]T and x = [-1, 1,0, ]T is the correspond-

e
ing basic solution. Ranc Nonbea pon brase
We can also take B = [a; a4] = L 8 . Then xp = [1,1]T and x = 1,0,/6,1 is the
01 [ s S
corresponding basic solution. C o ) 3 ° ( }_ ! ) Do Vinble
For B = [ag a3] = B ﬂ we have xg = [1/3 1/3]T Hence x = [0,1/3,1/3,0]7 is the
corresponding basic solution. ek ; \c\ ( l 2 )?@ - [ [ \
Note that all these basic solutions are non degenerate. 1 )

Thus if any one of the elements of xp is zero, the basic solution is degenerate.

AlthngTEhe number of solutions to Ax = b are in general infinite, we will see later that the
optimal solutions in LP problems are basic solutions. Therefore, we will like to know how many
basic solutions are there. This is equivalent to asking how many such nonsingular matrices B can
possibly be formed from the columns of A. It is obvious that the number of such matrices is bounded

!
by Cm. — n!

ml(n —m)!’

Theorem 1.1. A necessary and sufficient condition for the existence and non-degeneracy of all
possible basic solutions of Ax = b is the linearly independence of every set of m columns of the
augmented matriz Ap = [4,b].

Proof. (=) Suppose that all basic solutions exist and are not degenerate. Then for any set of m
columns of A, say
T DAL R TS 1<4; <n,1 <7< m,

there exists p;, 7 = 1,2,--- ,m such that

m
Z achaij =b.
j=1

Since the solution is non degenerate, all x5, # 0. We first claim that {a;; };"zl is linearly independent.
For if not, then there exist ¢;, j = 1,-+ ,m not all zeros, such that

m
E cjaij =0.
=1

ol

(“>

\b

[g,!i?][
-

Ax=b

Ka=Ch %)
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